
DP2011/07

Forecasting house price inflation: a model

combination approach

Sarah Drought and Chris McDonald

October 2011

JEL classification: E17,E37

www.rbnz.govt.nz/research/discusspapers/

Discussion Paper Series

ISSN 1177-7567

http://www.rbnz.govt.nz/research/discusspapers/


DP2011/07

Forecasting house price inflation: a model combination

approach∗

Sarah Drought and Chris McDonald†

Abstract

In this paper we use a range of statistical models to forecast New Zealand
house price inflation. We address the issue of model uncertainty by combining
forecasts using weights based on out-of-sample forecast performance. We
consider how the combined forecast for house prices performs relative to both
the individual model forecasts and the Reserve Bank of New Zealand’s house
price forecasts. We find that the combination forecast is on par with the best
of the models for most forecast horizons, and has produced lower root mean
squared forecast errors than the Reserve Bank’s forecasts.

∗ The Reserve Bank of New Zealand’s discussion paper series is externally refereed. The
views expressed in this paper are those of the author(s) and do not necessarily reflect the
views of the Reserve Bank of New Zealand. We thank Özer Karagedikli and participants
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1 Introduction

Forecasting house prices is important for monetary policy. This is because
house prices can play a significant role in the evolution of business cycles.
As such, house prices can be an important leading indicator of inflationary
pressures.

One channel by which house prices can affect the macroeconomy is through
consumption, via wealth and housing collateral effects. These effects were
widely investigated following strong increases in house prices for many coun-
tries from early-mid 2000. For example, see Muellbauer (2007), Dvornak and
Kohler (2007), Iacoviello and Neri (2010) and, for the New Zealand case, Hull
(2003), and De Veirman and Dunstan (2008). Results from the literature
suggest that increases in housing wealth can have significant positive effects
on consumption. This effect has become stronger over recent years as financial
deregulation increased households access to credit.

Developments in the housing market can also have an inflationary effect
via private investment. As house prices increase relative to the value of
housing-related construction costs (i.e. Tobin’s q for residential investment),
new housing becomes relatively more profitable. Moreover, as the value of
assets that can be used as collateral increase (value of houses and land),
the ability of individuals and firms to borrow and finance their investment
increases. As a result, one would expect a strong positive correlation between
house prices and private investment.

New Zealanders hold a large proportion of their wealth in housing assets.1

Consequently, the evolution of house prices is particularly important for
the New Zealand economy. Given this, there have been many studies that
investigate ‘fundamental’ house prices in New Zealand, including Herring
(2006) and Fraser et al (2008). Additionally, O’Donovan and Rae (1997),
and Briggs and Ng (2009) model the short-run dynamics of New Zealand
house prices around their fundamental level using error correction models.
However, these studies are all done ex-post with no focus on out-of-sample
forecasting. To our knowledge there is little published research that forecasts
New Zealand house prices in real time.

However, there have been attempts to forecast house prices outside New
Zealand using both structural and non-structural models. Das et al (2009)
and Gupta et al (2009) use a variety of time-series models, including factor
models and large scale Bayesian vector autoregression models, to forecast

1 Hull (2003) reported this figure to be 80 percent.
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house prices in South Africa and the United States respectively. In addition to
a range of time-series models, Gupta et al (2011) use the 10 variable dynamic
stochastic general equilibrium model of Iacoviello and Neri (2010) to forecast
house prices in the United States.

In a similar manner, we use a range of time series models to produce quasi-
realtime forecasts of house price inflation. Our models include an autore-
gression model (our benchmark model), single equation indicator models,
Bayesian vector autoregressions, error correction models and a factor model,
among others. Though we consider many models that cover a wide range of
empirical macroeconomic modelling approaches and use many indicators, it
is not an exhaustive list.

Estimating many models presents a problem about whether model selection
(forecasting with the best model in real time for each horizon) or model
combination would be the best forecast strategy. An advantage of model
combination is that it helps to mitigate model uncertainty and may average
out misspecification bias of individual models. Furthermore, a combination
forecast may be more robust to unknown instabilities (structural breaks) than
forecasts from individual models.

Accordingly, we consider two types of forecast combination: a simple average
and a weighted average (where weights are based on inverse mean squared
forecast errors) and compare the performance of these methods to a model
selection approach. We find that the two combination approaches and
the model selection approach produce similar root mean squared forecast
errors for most forecast horizons. However, model selection outperforms the
combination for forecasts between six and nine quarters ahead.

Lastly, we consider how our combined forecast for house prices performs
relative to both the individual models and the Reserve Bank of New Zealand’s
(RBNZ) house price forecasts.2 We find that the combination forecast always
beats the autoregressive benchmark model and is on par with the best of the
models at most horizons. The combination forecast has also produced lower
root mean squared forecast errors than the RBNZ’s published forecasts. As
such, the combination approach for forecasting house prices would be a useful
addition to the forecast process.

The remainder of the paper is structured as follows. Section 2 discusses model

2 We use the RBNZ forecasts as a comparison because to our knowledge there are no
house price forecasts published by an alternative source each quarter. While the RBNZ
do not publish their house price forecasts on a regular basis, forecasts are produced
each quarter for internal use.
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combination. Section 3 introduces the eleven models used in the model suite.
Section 4 outlines the data used to produce quasi-realtime forecasts. Section
5 outlines model evaluation and combination. Section 6 presents results and,
finally, section 7 concludes.

2 Model Combination

Decision makers often have multiple forecasts of a particular variable avail-
able to them. Ex-ante it can be difficult to know how to best exploit the
information contained in the individual forecasts. The two obvious options are
to select the ‘best’ individual forecast or to combine the individual forecasts
to produce a single summary forecast. The latter is known as model (or
forecast) combination and has been widely used in the forecast literature,
with empirical applications dating back at least to Bates and Granger (1969).

Timmermann (2006) provides a recent survey of the large literature on forecast
combination. Timmerman outlines four reasons for using forecast combina-
tions rather than relying on the forecast from the ex-ante best individual
model. Two of these relate to our motivation for using a forecast combination
approach.

Firstly, a combination forecast may be more robust to the misspecification
biases of individual models and measurement errors in the underlying datasets.
Because the true data generating process is unknown and likely to be more
complex than the most flexible and general model used by the forecaster, the
individual models will be subject to an unknown misspecification (omitted
variables) bias. A combination will be useful in the case where the individual
models are subject to different bias. In this case it is plausible that the
combination will average out the biases and improve forecast accuracy.

Secondly, a combination forecast may be more robust to unknown instabilities
(structural breaks) than forecasts from an individual model. This is because
individual models may be affected differently by structural breaks with some
models adapting quickly while others are slow to adjust (parameters update
slowly to post-break data). Structural breaks are generally difficult to detect
in real time so a combination can be useful because the resulting forecast will
contain information from various models with different degrees of adaptability.
Thus, if a break was to occur the combination forecast would be influenced
by some models whose coefficients adjust quickly to reflect the post-break
data.
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Empirical studies have shown that combination forecasts frequently outper-
form forecasts from the best-performing model in real time. Timmermann
(2006) highlights that simple combination schemes (ones that do not require
the estimation of many parameters) are hard to beat. For example, a combi-
nation using equal weights or weights based on past forecast performance,
such as inverse mean squared error weights, tend to produce more accurate
forecasts than a combination using optimal weighting schemes based on the
full variance-covariance matrix of forecast errors (See Timmermann (2006)
and the references therein).

For some of the reasons outlined above, forecast combination is becoming
increasingly popular in central banks. The Reserve Bank of New Zealand
currently uses a suite of empirical models to produce forecasts for key macroe-
conomic variables. The combined forecasts are used to highlight any risks
around the central projection.3 Other central banks that use forecast combi-
nation include the Bank of England, the Riksbank (Sweden), Norges Bank
(Norway) and the Bank of Canada, see Bjørnland et al (2009) for an overview.

3 Models

To forecast house prices, we use eleven time series models with a number
of different indicators. We start with models as simple as an autoregressive
process and single equations, and then discuss more dynamic models - some
of which are fairly data rich. While we have tried to consider a broad range
of models that cover a wide range of empirical macroeconomic modelling
approaches, it is not an exhaustive list.

All models are estimated in quasi-realtime producing forecasts up to 10
quarters ahead for the Quotable Value New Zealand (QVNZ) nominal house
price index from 1994Q1 to 2010Q4. That is, each model is estimated at
every forecast date using real time data or quasi-realtime data.4 Most models
are estimated on data dating from 1988Q1 with any exceptions to this noted.
This start date is influenced by data limitations and also the economic reforms
in the 1980s. While there were still changes after this date (for example, the
adoption of the inflation target in 1990), we did not want to shorten the

3 Combination forecasts are produced for GDP, consumption, CPI, tradable CPI, non-
tradable CPI, the 90-day interest rate and the NZD TWI.

4 We define quasi-realtime data as the most recent vintage of the data cropped back to
what would have been available at the time of the forecast.
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length of the time series any further. Section 4 contains more information
about the data.

Autoregression (AR)

We started with a simple autoregressive model to forecast quarterly QVNZ
house price inflation (HPinft). This type of model has been shown to forecast
reasonably well and we use this as our benchmark model. The number of
lags (p) ranges from one to four and is chosen using the Bayesian information
criteria. The following equation shows an AR(p) model:

HPinft = γ0 + γ1HPinft−1 + ...+ γpHPinft−p + εt (1)

Migration and Mortgage Rate indicator (MM indicator)

Migration flows and mortgage rates are important factors of the demand for
housing. Incoming migrants need houses and out-going migrants vacate them.
This affects housing activity through both house prices and construction ac-
tivity. Coleman and Landon-Lane (2007) show that the relationship between
migration flows and house prices was particularly strong in New Zealand over
the past half century. Mortgage rates determine the cost of financing a house
purchase and consequently are also an important determinant of housing
demand.

To capture these relationships, we include permanent and long term (PLT)
arrivals, PLT departures, and the 5-year mortgage rate in a single equation
model. The equation is estimated using OLS with the independent variables
all lagged by two quarters. This lag was chosen because it corresponds to the
tightest in-sample correlation with house prices.

HPinft = γ0 + γ1PLTAt−2 + γ2PLTDt−2 + γ3Rt−2 + εt (2)

To forecast house price inflation with this equation we need forecasts of PLT
arrivals, PLT departures, and the 5-year mortgage rate. These forecasts are
generated using an AR process.
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Bayesian Vector Autoregression (Small BVAR)

This model includes the same four variables as the MM indicator: quarterly
house price inflation, PLT arrivals, PLT departures, and the 5-year mortgage
rate, and models them in VAR. The VAR framework is beneficial because
all variables are treated endogenously so forecasts for each variable are done
within the model.

Consider a VAR(p) model:

Yt = c+B1Yt−1 +B2Yt−2 + ...BPYt−p + vt (3)

where the Bayesian information criteria is used to select the optimal number
of lags (p), with p ranging between one and four.

We estimate the VAR using Bayesian techniques, in part because of few
degrees of freedom, though later in the sample the number of data observa-
tions was ample. We use Minnesota priors that assume the mean of prior
distribution is a random walk. The specification of the standard deviation of
the prior imposed on variable j in equation i at lag k is:

σijk = θw(i, j)k−φ
(
σ̂uj
σ̂ui

)
(4)

Where θ is the ‘overall tightness’ parameter, reflecting the standard deviation
of the prior on the first lag of the dependent variable. The k−φ term is the lag
decay parameter. Increasing φ reduces the standard deviation of the priors
on lags greater than one, imposing the belief that more recent lags contain
more useful information than more distant ones. Also, w(i, j) allows us to
weight the priors on variables differently. For a good summary of the priors
see LeSage (1999).56

5 We use fairly typical hyperparameter values, θ is set to 0.2 and φ is one. We place
more weight on own lags of PLT arrivals and PLT departures in their corresponding
equations than on lags of other variables using w(i, j). This reflects our belief that the
movements in migration flows are unlikely to be well explained by mortgage rates or
house prices.

6 We use the LeSage MATLAB package to estimate this Bayesian VAR, using Gibbs
sampling. For further details on these functions see LeSage (1999).
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Bayesian Vector Autoregression (BVAR)

Using a similar Bayesian VAR technique to that above, we take the four
variables discussed for the small BVAR and MM indicator models and add
seven additional variables. We add these variables to increase the number of
possible indicators for house prices. Notably, we aim to include variables that
have some leading information, or are key macroeconomic indicators. The
additional variables are: quarterly consumer price inflation, the quarterly
difference in the unemployment rate, quarterly residential investment growth,
quarterly GDP growth, the terms of trade, the New Zealand dollar TWI, and
the quarterly difference in the Australian unemployment rate.

In this 11 variable VAR, the number of parameters gets very large. As our
dataset only starts in 1988, we have few degrees of freedom available to
estimate the parameters without over-fitting. We use Bayesian shrinkage to
overcome this problem. To set priors we adopt the method used by Bloor
and Matheson (2008) which is similar to the algorithm used by Bańbura
et al (2008). Using this method we firstly estimate a baseline VAR (the
small BVAR) using OLS (the equivalent of Bayesian estimation with very
loose priors). Then, the overall tightness hyper-parameter, θ (reflecting the
standard deviation of the prior on the first lag of the dependent variable),
on the larger BVAR is tightened so that the in-sample fit is equal to the
in-sample fit of the baseline VAR.7 The number of lags in the large BVAR is
determined using the Bayesian information criteria (the same number of lags
is used in the baseline BVAR).

REINZ Monthly Vector Autoregression (REINZ VAR)

The Real Estate Institute of New Zealand (REINZ) releases monthly housing
data including a house price index, the number of house sales, and the median
days to sell. We use these three series in a monthly VAR to capture the most
recent movements in the housing market. We also include the 90-day interest
rate to allow for changes in monetary policy.8

We estimate this VAR using Bayesian techniques, the same as those used to

7 As in the small BVAR, the decay hyper-parameter (φ) is set to one. We also use the
weighting matrix (w) to put more weight on own lags of the Australian unemployment
rate and on the terms of trade in their corresponding equations than on the other
variables. We argue that the New Zealand economy is too small to have a significant
impact on international prices or the Australian unemployment rate.

8 We use data starting in 1992M1, as this is when the REINZ data set begins.
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estimate the small BVAR.9 Again, we use the Bayesian information criteria
to choose the lag length, with the lags ranging between one and six.10 This
VAR forecasts the REINZ variables at a monthly frequency. These forecasts
are collapsed to a quarterly frequency by taking the quarterly average.

In a second step, we forecast quarterly QVNZ house price inflation (the house
price series forecast in other models) using a bridging equation. We use
OLS to regress quarterly QVNZ house price inflation (HPinf) on quarterly
REINZ housing price inflation (RHPinf) and house sales (HS). We include
house sales in the equation because this improves the in-sample fit between
the QVNZ house price inflation and REINZ house price inflation.

HPinft = γ0 + γ1RHPinft + γ2HSt + εt (5)

Using the forecasts for the REINZ variables from the first stage, equation 5
can be used to generate forecasts for quarterly QVNZ house price inflation.

Error Correction Model (ECM)

We use a simple two-step error correction model to forecast nominal house
prices. The first step estimates the fundamental house price level. The
second step uses the error correction term (deviation of house prices from
their fundamental level), amongst other data, to forecast the growth in house
prices. This model is related to work by O’Donovan and Rae (1997), the
International Monetary Fund (2003), Abelson et al (2005) and Briggs and
Ng (2009), among others.

In the long-run equation, the fundamental house price level is determined
by nominal GDP, the working age population and the user cost of capital.11

Nominal GDP is designed to capture the income effect on housing demand.
We include the working age population to capture any influence that a
changing population will have on housing demand.12 For the user cost of
capital we use the floating first-mortgage new customer interest rate less the

9 The tightness hyper-parameter (θ) is set to 0.1. The decay hyper-parameter (φ) is 1.
We treat all variables the same in every equation by making w(i, j) = 1 for all i and j.

10 Prior to 1996, we restrict the VAR to just one lag due to a very short sample.
11 This specification is similar to that used in International Monetary Fund (2003) and

Briggs and Ng (2009), however our model also includes a population variable and the
user cost of capital rather than the mortgage rate.

12 We use the working age population rather than total population to better reflect the
cohort of the population who will be house buyers.
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expected capital gain from housing, which we proxy by the most recent 3
year moving average of nominal annual house price inflation.

Long-run equation:

hpt = α0 + α1gdpt + α2popt + α3UCt + εt (6)

where hp is the log of the QVNZ house price index, gdp is the log of nominal
GDP, pop is the log of the working age population, and UC is the user cost.13

The long-run equation is estimated using OLS on data dating from 1970Q1.
Initial testing of the data with the end date ranging from 1994Q1 to 2010Q4
suggests that the log levels of nominal house prices, nominal GDP and the
working age population all contain unit roots. We also find at least one
co-integrating vector among the variables included in the long-run equation.
This suggests that an error correction model is appropriate.

The short-run equation uses the lag of the error correction term (εt−1) to
forecast house price inflation. The lag of house price inflation and the working
age population growth are also included in this equation.14

Short-run equation:

∆hpt = β0 + β1εt−1 + β2∆hpt−1 + β3∆popt−1 + ςt (7)

The short-run equation is also estimated using OLS.15 The coefficients on
variables are generally correctly signed for the different vintages and are
highly significant (at the 1 percent level in many cases).16 Furthermore, we
can reject the hypothesis that the error correction term contains a unit root.
Thus, the error correction mechanism will help house prices adjust to the
model-determined ‘fundamental’ level over time.

13 The user cost has not been logged because there may have been periods over our sample
period where this was negative.

14 The short-run equation is estimated over a shorter sample dating from 1988Q1 to be
more consistent with the sample used for the other models.

15 To generate forecasts for house price inflation this model requires forecasts for the
independent variables. Nominal GDP, working age population, and the mortgage rate
are all forecast using an AR(1) process.

16 For example, in the long run equation α1 and α2 are positive, whereas α3 is negative.
In the short run equation, β1 is negative, while β2 and β3 are positive.
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Factor model

The most data-rich model in our suite is a dynamic factor model. This
model uses factors from 21 data series, including general macroeconomic data,
interest rate data and housing specific data, such as consents, all dating
from 1988.17 This is typically a small number of series to be included in
a factor model and a large Bayesian VAR, similar to the BVAR discussed
earlier, could have been used instead. However, to add another dimension to
our model suite we opted to use a factor model. Furthermore, Boivin and
Ng (2006) find that extracting factors from an increasingly large number of
series is not necessarily optimal. Thus, we include a carefully selected set
of indicators and avoid additional series that may introduce more noise into
the factor estimation while providing little additional information about the
housing market.

The forecasts are made using the following equation, where HPinft+h is the
quarterly house price inflation forecast at horizon h, ft is a matrix of factors
and (L) denotes the variations on lag length. Forecasts from this model are
estimated using direct forecasting methods rather than iterative methods
used in the other models.

HPinft+h = φ+HPinft + γ(L)ft + ϑt+h (8)

This factor model allows for many variations in its structure, similar to Stock
and Watson (2002). In particular, it allows for variations in the number of
factors and lags of the factors.18 The Bayesian information criteria is used to
choose between different structures.

Rental yield model

Here we apply a simple asset price model to the New Zealand housing market.
We use the framework outlined by Weekin (2004), who applies this model
to the UK housing market. This asset price model is one where households
either rent or own houses, which are seen as durable assets providing a flow
of housing services. According to this model, in equilibrium, real house prices
Ph will be given by:

17 The series included are listed in appendix A.
18 To ensure parsimony, the maximum number of factors and lags of factors is set to two.
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Ph =
D

rf + ρ− g
(9)

where D is the current real rental less maintenance and other non-interest
costs, rf is the risk free real interest rate, ρ is the housing risk premium and
g is the expected long-run growth rate of rentals.19

The intuition behind this framework is quite simple. The equilibrium price is
the discounted value of the expected future net real rental flow.20 Changes
in either the net real rental flow or the discount rate will motivate portfolio
shifts into or out of housing, thus affecting the equilibrium price.

Equation 9 calculates an estimate of the fundamental level of real house prices.
The deviation of house prices from their fundamental level is then used in
a VAR that also includes quarterly real house price inflation, PLT arrivals,
and PLT departures.21 We estimate this VAR using Bayesian estimation
with standard Minnesota priors, the same as those used in the small BVAR.
The number of lags included in the VAR can range from one to four and are
chosen using the Bayesian information criteria.

This model is estimated with data starting in 1985Q1.22 The VAR is used
to forecast all the variables except the deviation of house prices from their
fundamental level. The forecast for the deviation is found by first forecasting
the ‘fundamental’ price level for the next horizon using equation 9 and then
taking the difference between this forecast and the 1-horizon ahead forecast
for house prices from the VAR.23 The forecast deviation of house prices from

19 Following DTZ New Zealand (2004), we assume net rentals to be 75 percent of the
gross rent and deflate the annual net rental series by the CPI to arrive at an estimate of
the net real rental. The expected growth in real rentals is not observable so we assume
it equal to the long-run average growth rate in real rentals over the past two decades
(about 1 per cent per annum).

20 The discount rate is the risk free real interest rate plus the risk premium households
require for holding houses rather than risk free assets (government bonds). Because
this risk premium is unobservable (and likely to vary through time) we use the lowest
mortgage rate available (from floating, 2-year and 5-year rates) less inflation as a proxy
for the discount rate. To smooth out the quarter to quarter noise we use the HP-trend
of the discount rate series with a smoothing parameter of 5000.

21 Real house prices are calculated by deflating nominal house prices with the CPI.
22 A longer sample is used for this model to better capture the long-run relationships that

may exist for the ‘fundamental’ house price level in this context. However, we could
not extend the sample further due to data limitations.

23 This process requires forecasts for the minimum real mortgage rate, CPI inflation and
real rents. These variables are forecast using an AR(4) model estimated on the most
recent 10 years of data.
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their fundamental level is then used in the VAR to forecast house prices for
the next horizon, and the process repeats for all forecast horizons. Finally,
the forecast of CPI inflation is added to the real house price inflation forecast
to produce a forecast for nominal house price inflation.

Nominal GDP error correction model (YECM)

Over the long term, New Zealand’s nominal GDP and house prices have
tended to move together (figure 1). Briggs and Ng (2009) discuss how this
might reflect a fixed supply of land. They suggest that as real aggregate
income rises over time, the real price of land would rise at a similar rate.

Figure 1
House price index and nominal GDP
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We use a error correction model to forecast house prices while accounting for
this long run relationship. We do this in a two stage process, first we estimate
a bivariate regression to find the long run relationship between the log of
house prices (hpt) and the log of nominal GDP (gdpt), shown in equation 10.
This equation is estimated using OLS on data dating back to 1970, a long
period to best capture the long-run relationship.

hpt = γ0 + γ1gdpt + εt (10)

In the second stage of this model, the error term from equation 10 (εt) is
added to a VAR that includes quarterly house price inflation, the 5-year
mortgage rate, PLT arrivals and PLT departures, similar to the process of
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the rental yield model. Again, we use Bayesian methods to estimate the
VAR.24 Standard priors are used (the same as used in the small BVAR), and
the Bayesian information criteria is used to determine the optimal number of
lags between one and four.

As in the rental yield model, all variables are forecast in the VAR except for
the error correction term (εt+h). The forecast for the error correction term
is the difference between the house price forecast (from the VAR) and the
forecast of the model-implied fundamental level (found using equation 10,
where GDP is forecast forward using an AR process with four lags). The
forecast for εt+h is then used in the VAR to generate forecast for the next
period, and the process repeats for all forecast horizons.

Regional BVAR

Regional house prices do not necessarily move together. Figure 2 shows
the growth in house prices for New Zealand’s three main centres, Auckland,
Wellington and Christchurch.25 House prices throughout New Zealand may be
driven differently by changes in migration and mortgage rates. For example,
if a large proportion of migrants entering New Zealand migrate to Auckland,
then Auckland’s house prices might react more strongly to a spike in PLT
arrivals. Alternatively, if more properties in Wellington were owner-occupied
then a rise in mortgage rates might have a smaller impact on house prices,
relative to a market where investors were more prominent.

To model and forecast house prices in each centre, we use the same framework
as used in the small BVAR. Each centre faces the same mortgage rate and
immigration series (we do not have access to regional immigration data).
Therefore, the regional VARs differ only by the house price series included
and the parameter estimates. For each VAR, we use Bayesian estimation
with Gibbs sampling.26 We allow the Bayesian information criteria to select
the number of lags, ranging from one to four.

The forecasts from each centre are aggregated using a contemporaneous
bridging equation that links the three regional house price series to the

24 The VAR is estimated on data starting in 1988Q1.
25 The regional house price series are also published by Quotable Value New Zealand and

are available from 1990Q1.
26 The priors are the same used for the small BVAR: the overall tightness hyperparameter,
θ is set to 0.2, decay parameter, φ is set to one, and the weighting matrix (w) treats
the migration variables as exogenous.
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Figure 2
Regional house price inflation
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national house price series. We allow for persistent differences between the
weighted average and the official national house price series by incorporating
a lag of the official series in the equation.

A model of supply and demand for housing

This model forecasts house prices given changes in supply and demand for
housing. To do this, two data series are created: the number of houses needed
(demand) and the number of houses built (supply).

The demand for housing is approximated by the quarterly increase in the
population divided by the number of people per household. The number of
people per household is estimated to be equal to total population divided by
the stock of residential dwellings. The supply of housing is approximated by
the change in the stock of residential dwellings (figure 3).27

The supply and demand series are used in a VAR that also includes the 5-year
mortgage rate and quarterly house price inflation. The VAR is estimated
using Bayesian techniques with Gibbs sampling. Again, the number of
lags can range between one and four and is determined using the Bayesian
information criteria. The priors use the same hyperparameters as the small

27 We recognise that supply tends to be larger than demand. This reflects that we have
not accounted for houses that are destroyed, which we have little information about.
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Figure 3
Annual supply and demand for houses
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BVAR. However, there are no adjustments to the weighting matrix, w, so all
variables are treated the same across different equations.

4 Data

Where possible we use real time data to produce the historic house price
forecasts. That is, the data available at the time the forecast would have
been made. For key variables used in the RBNZ forecast process (such as
GDP, CPI and house prices), real time data has been stored when the RBNZ
forecasts are published each quarter. However, for many other variables
real time data is not available. For these variables we use the most recent
data and crop it back to what would have been available at the time of
the forecast (quasi-realtime). In New Zealand, the real variables from the
National Accounts are subject to the largest revisions. Generally, other data
is not revised or the revisions are relatively small. Because we have real time
data for most of the real variables that we use, it is our opinion that the
use of quasi-realtime data for some variables would have little effect on the
results presented in this paper.

The house price series that we forecast in this paper is the Quotable Value
New Zealand (QVNZ) quarterly house price index, shown in figure 4. This
series has been forecast at the RBNZ for more than a decade. However, the
QVNZ index is somewhat untimely (four-month lag). As such, in much of
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our analysis we use the REINZ monthly house price index, which only has a
two week lag, to forecast the first quarter.28

Figure 4
QVNZ house price series
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We considered forecasts both with and without the REINZ monthly data.
As this additional information was found to improve forecast performance,
we have included this data where possible in our models.29 One caveat to
this approach is that the REINZ index was only developed in 2009 (but
backdated to 1992) so comparing the forecast performance of the models to
the RBNZ in the first quarter may not be entirely fair. However, in trying to
develop accurate forecasting models it is important to consider all available
information. Additionally, the information incorporated in the REINZ index
has essentially been available to the RBNZ for a number of years.

The data series used in each model (with the exception of the factor model)
were mentioned in section 3. In total, 39 data series from a range of sources
are used in estimating the model suite. The individual series, grouped by
data source, are outlined in appendix A.

5 Evaluation

Initially, all models are estimated on data up to 1994Q1 and are used to
forecast the quarterly percent change (qpc) of house prices up to 10 quarters

28 See McDonald and Smith (2009) for information on the REINZ house price index.
29 The REINZ VAR is the only model which generates it’s own first-quarter forecast. All

other models use the REINZ index for their first forecast.
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ahead.30 All models are then re-estimated using new data each quarter and
subsequently produce a new set of forecasts. This process is repeated until
2010Q4 which is the final estimation period.

The models are all evaluated for each forecast horizon using actual data. The
relative performance of the individual models varies across forecast horizons
(some models are better for near-term forecasting and others are better for
medium-term forecasting), so the combination weights are horizon-specific.

5.1 Forecast combinations

We consider two combination approaches and a model-selection approach to
produce point forecasts at each horizon. The combination approaches use
equal weights and mean squared error weights. When using equal weights,
each model receives a 1/N weighting, where N is the number of models. Mean
squared error (MSE) weights are calculated using the inverse of the model’s
mean squared error. Hence, the model with the lowest average forecast error
receives the highest weight for the combination forecast.

MSE weights:

MSEi,h =
1

T

T∑
t=1

(yt+h − ŷt+h)2 (11)

MSEweighti,h =

1
MSEi,h∑N

i=1(
1

MSEi,h
)

(12)

where T refers to the number of forecasts h-horizons ahead and N to the
number of models. Forecasts from 1994Q1 to 1997Q4 are used to intialise the
MSE weights, allowing quasi-realtime combination forecasts to be calculated
recursively from 1998Q1.

In addition to the two combination methods, we also consider a model
selection approach. This method forecasts using the model with the lowest
mean squared error at the forecast date (the ex-ante best model), for each
horizon. The fact that a model has forecast accurately in the past, does
not mean that this will be true in the future so the selected model may

30 Because of the four-month lag in QVNZ house price outturns, the first two forecasts
are ‘nowcasts’. Specifically, the first forecast quarter forecast is the forecast for the
previous quarter and the second quarter forecast is for the current quarter.
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change over time. Model selection forecasts are also produced recursively
from 1998Q1.

6 Results

In this section we describe the main results. First, we look at the forecast
performance of the individual models. We then compare the performance
of the two combination approaches outlined in section 5 against the model
selection approach. Finally, our preferred combination forecast, which uses
mean squared error (MSE) weights, is compared to both the individual model
forecasts and the Reserve Bank of New Zealand’s house price forecasts. All
results shown below are evaluated over the period 1998Q1 to 2010Q4.

6.1 Individual model results

Figure 5 shows the root mean squared errors (RMSEs) and biases of each
model’s forecasts. Table 1 shows the RMSEs expressed relative to the
benchmark AR model. The blue entries in this table are significantly better
than the AR benchmark, while the red entries are significantly worse.31

Figure 5
Root mean squared errors (left) and biases (right) of individual
forecasts
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31 Statistical significance is measured using the Diebold and Mariano (1995) test at the 95
percent confidence level.
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Table 1
Root mean squared errors of individual forecasts relative to AR
benchmark

1 2 3 4 5 6 7 8 9 10
AR (absolute RMSE) 0.71 1.30 1.85 2.11 2.34 2.38 2.36 2.41 2.42 2.46

MM indicator 1.00 1.38 1.00 0.97 0.92 0.93 0.93 0.91 0.97 1.01
Small BVAR 1.00 0.99 0.97 0.96 0.95 0.94 0.97 0.95 0.96 0.98
BVAR 1.00 1.02 1.02 1.11 1.16 1.15 1.16 1.14 1.12 1.13
REINZ VAR 0.90 0.67 0.82 0.92 0.93 0.99 0.98 0.96 0.98 0.97
ECM 1.00 0.97 0.94 0.92 0.83 0.76 0.75 0.72 0.77 0.80
Factor 1.00 0.99 0.96 1.00 0.98 0.99 1.06 1.07 1.09 1.08
Rental Yield 1.00 0.93 0.83 0.81 0.77 0.79 0.83 0.85 0.90 0.95
YECM 1.00 1.05 1.09 1.15 1.16 1.19 1.22 1.15 1.11 1.08
Regional BVAR 1.00 0.94 0.96 0.96 0.94 0.94 0.96 0.99 1.10 1.16
Supply and Demand 1.00 1.03 1.03 1.03 1.00 0.99 1.02 1.00 1.00 1.02

The AR model performs comparably to the other models, with the RMSE
for all forecast horizons well within the range of RMSEs from the other
models. However, there are a few models whose forecasts are considerably
more accurate than the AR benchmark.

The REINZ VAR forecasts particularly well for the first three quarters, with
the RMSE for the second quarter 33 percent lower than the RMSE from the
AR model. The REINZ VAR uses monthly housing-specific data, whereas
a majority of the data used by the other models is general macroeconomic
data measured at a quarterly frequency. Thus, the use of higher frequency
and more timely housing-specific data is beneficial for forecasting house price
inflation in the near term.

For horizons beyond three quarters, the ECM, rental yield model and small
BVAR model are the most accurate. The forecast performance of the rental
yield model is statistically better than the AR model for forecasts three to
eight quarters ahead, while the forecast performance of the small BVAR is
statistically better than the AR model for forecasts six quarters ahead. These
results suggest that factors such as income, population flows, rental yields and
mortgage rates are important determinants of house prices over the medium
term.

6.2 Combination results

We combine the individual forecasts using equal and MSE weights. Figure 6
shows the RMSEs and biases of these combination forecasts compared to the
forecasts produced using model selection.
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Figure 6
Root mean squared errors (left) and biases (right) of forecasts using
different weighting methods
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Over our sample period, forecasts from the best-performing model (model
selection) have been more accurate than the combination forecasts for most
horizons, particularly six to nine quarters ahead. The good performance of
model selection over these horizons is likely due to the ECM’s forecasts being
considerably more accurate than most of the other models. This result is
at odds with the empirical evidence that combination forecasts frequently
outperform forecasts from the best performing model in real time, outlined
by Timmermann (2006).

While this is a surprising result, the use of a combination forecast may still
be beneficial for multiple reasons. First, the difference between the RMSEs
of the combination and model selection forecasts is generally small, and the
combination is less biased than the model selection forecast. Second, the good
performance of a particular model in the past does not guarantee good forecast
performance in the future. Finally, as outlined in section 2, a combination
approach will likely be more resilient to structural breaks and misspecification
biases than forecasts from an individual model.

The difference in forecast performance between the two combination methods
is marginal. For analysis hereafter we focus on the MSE-weighted combination
because this allows the weights on each model to vary over time. Consequently,
in contrast to equal weights, MSE-weights should adapt somewhat to any
structural breaks in the data.

The MSE-weighted combination has performed well relative to the individual
models over our sample period. This is shown in figure 7 where the combina-
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tion is shown by the solid black line. The RMSE of the combination is only
slightly higher than the best individual model at each forecast horizon.

Figure 7
Root mean squared errors (left) and biases (right) of individual
and combination forecasts
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The combination forecast has a small bias compared to some of the individual
models. One of the motivations for using a combination forecast was that it
may average out biases from individual models. This appears to be the case
here.

Do the combination forecasts outperform the Reserve
Bank of New Zealand’s forecasts?

We now compare the performance of the MSE-weighted combination forecasts
with the RBNZ’s forecasts.32 The RMSEs and biases of both forecasts are
shown in figure 8, with the RMSEs also in table 2.33 Over the evaluation
period, the combination forecasts have been considerably more accurate than
the RBNZ forecasts for all horizons. The improvement in forecast performance
is statistically significant for forecasts up to nine quarters ahead. However, a
comparison of these forecasts for the first quarter is not entirely fair because
the REINZ series, used by most models for their first quarter forecast, was
not developed until 2009.

32 The RBNZ forecasts are used as a comparison because to our knowledge there are no
house price forecasts published by an alternative source each quarter.

33 The blue entries in table 2 show the forecast horizons where the forecast performance of
the combination has been significantly better than the RBNZ. Statistical significance is
measured using the Diebold and Mariano (1995) test at the 95 percent confidence level.
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Figure 8
Root mean squared errors (left) and biases (right) of combination
and Reserve Bank forecasts
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Table 2
Root mean squared errors

1 2 3 4 5 6 7 8 9 10
RBNZ 1.18 1.77 2.36 2.79 2.93 2.79 2.64 2.54 2.42 2.41
Combination 0.67 1.10 1.58 1.84 1.99 1.99 2.00 2.02 2.10 2.18

During the mid-late 2000s the RBNZ held the view that house prices were
above their fundamental values.34 Consequently, they were forecasting house
prices to decrease. This is apparent in RBNZ forecasts for more than 4
quarters ahead. Figure 9 shows the RBNZ and combination forecasts graphed
against actual outturns. Before the housing market downturn in 2007/08, the
RBNZ’s long-run forecasts for annual house price inflation were consistently
below 5 percent and often negative. However, house price inflation was
persistently above 10 percent.

The strong negative bias of the RBNZ’s forecasts highlight that the RBNZ
tended to place a lot of weight on the fundamental level of house prices over
our sample period. Many of the models used in the combination do not have
a ‘fundamental’ house price value. Hence, the combination forecasts were
generally higher than the RBNZ forecasts and were consequently closer to
actual house price inflation.

These results show that a combination approach can produce relatively
accurate house price forecasts. However, one must be mindful that the quasi-
realtime combination forecasts will inherently have an advantage over the

34 Reserve Bank of New Zealand (2005) and Reserve Bank of New Zealand (2008).

22



Figure 9
Combination and RBNZ Forecasts

98 99 00 01 02 03 04 05 06 07 08 09 10

−10

−5

0

5

10

15

20

25

−10

−5

0

5

10

15

20

25

 

 

RBNZ Combination actual

Two quarters ahead
Annual % Annual %

98 99 00 01 02 03 04 05 06 07 08 09 10

−10

−5

0

5

10

15

20

25

−10

−5

0

5

10

15

20

25

 

 

RBNZ Combination actual

Four quarters ahead
Annual % Annual %

99 00 01 02 03 04 05 06 07 08 09 10

−10

−5

0

5

10

15

20

25

−10

−5

0

5

10

15

20

25

 

 

RBNZ Combination actual

Six quarters ahead
Annual % Annual %

99 00 01 02 03 04 05 06 07 08 09 10

−10

−5

0

5

10

15

20

25

−10

−5

0

5

10

15

20

25

 

 

RBNZ Combination actual

Eight quarters ahead
Annual % Annual %

RBNZ forecasts due to the ex-post knowledge of the housing market used
to select indicators and develop the model suite. Furthermore, we recognise
that the evaluation period is a potential caveat to our results. In particular,
the forecasts were evaluated over a 12-year period from 1998Q1 that included
a prolonged upswing in the housing market and consequently our results
could be biased by this sample.35 Regardless of these caveats, we think our
results are quite striking and suggest that a combination approach should be
considered in the forecast process.

7 Conclusion

In this paper we developed a range of empirical models to forecast house
price inflation. Typically, the models that produced more accurate forecasts
than our AR benchmark were those that used small housing-specific data

35 However, we could not generate quasi-realtime forecasts over a longer sample due to
data limitations.
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sets, such as the REINZ VAR, the error correction model (ECM) and the
rental yield model.

We generate a combined forecast using three approaches: equal weights,
MSE weights and model selection. Over our evaluation period the model
selection approach had lower root mean squared forecast errors than the
combination methods. This result is at odds with empirical evidence, outlined
in Timmermann (2006), that simple averages often produce more accurate
out-of-sample forecasts than the best-performing model in real time. However,
the differences between the RMSEs of the model selection and combination
forecasts were small for most horizons.

We also evaluate the combination forecast against both the individual models’
and the RBNZ’s forecasts of house price inflation. We find that the com-
bination forecast is on par with the best of the individual models at most
horizons, and has produced lower RMSEs than the RBNZ’s forecasts. For
most horizons, the forecast performance of the combination was significantly
better than the forecast performance of the RBNZ.

These results suggest statistical model forecasts for house price inflation
should be considered in the forecast process. Moreover, a combined forecast
is beneficial because it encompasses a wide range of modelling techniques
and data, while producing reasonably accurate forecasts. While the results
are striking, we recognise that the evaluation period is relatively short. Fur-
thermore, in this paper we have only focused on the combination of point
forecasts. A natural extension is to consider density forecast combination.
This could be done in a similar manner to McDonald and Thorsrud (2011).
We leave this for future work.
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Bańbura, M, D Giannone, and L Reichlin (2008), ‘‘Large bayesian vars,’’
European Central Bank, Working Paper Series, 966.

Bates, J M and C W J Granger (1969), ‘‘The combination of forecasts,’’
Operational Research Quarterly, 20(4), 451--468.

Bjørnland, H C, K Gerdrup, A S Jore, C Smith, and L A Thorsrud
(2009), ‘‘Does forecast combination improve Norges Bank inflation
forecasts?’’ Norges Bank, Working Paper, 2009/01.

Bloor, C and T Matheson (2008), ‘‘Analysing shock transmission in a
data-rich environment: A large bvar for new zealand,’’ Reserve Bank
of New Zealand, Reserve Bank of New Zealand Discussion Paper
Series, DP2008/09.

Boivin, J and S Ng (2006), ‘‘Are more data always better for factor
analysis?’’ Journal of Econometrics, 132(1), 169--194.

Briggs, P and T Ng (2009), ‘‘Trends and cycles in New Zealand house
prices,’’ Centre for Housing Research, Aotearoa New Zealand, Paper
for CHRANZ workshop.

Coleman, A and J Landon-Lane (2007), ‘‘Housing markets and migration
in new zealand, 1962-2006,’’ Reserve Bank of New Zealand, Reserve
Bank of New Zealand Discussion Paper Series, DP2007/12.

Das, S, R Gupta, and A Kabundi (2009), ‘‘Could we have predicted the
recent downturn in the south african housing market?’’ Journal of
Housing Economics, 18(4), 325--335.

De Veirman, E and A Dunstan (2008), ‘‘How do housing wealth, financial
wealth and consumption interact? evidence from New Zealand,’’ Re-
serve Bank of New Zealand, Reserve Bank of New Zealand Discussion
Paper Series, DP2008/05.

Diebold, F X and R S Mariano (1995), ‘‘Comparing predictive accuracy,’’
Journal of Business & Economic Statistics, 13(3), 253--63.

DTZ New Zealand (2004), ‘‘Changes in the structure of the New Zealand
housing market volume 1,’’ Centre for Housing Research Aotearoa
New Zealand.

Dvornak, N and M Kohler (2007), ‘‘Housing wealth, stock market wealth
and consumption: A panel analysis for Australia,’’ The Economic
Record, 83(261), 117--130.

Fraser, P, M Hoesli, and L McAlevey (2008), ‘‘House prices and bubbles
in New Zealand,’’ The Journal of Real Estate Finance and Economics,

25



37(1), 71--97.
Gupta, R, A Kabundi, and S M Miller (2009), ‘‘Using large data sets to

forecast housing prices: A case study of twenty us states,’’ University
of Pretoria, Department of Economics, Working Papers, 200912.

Gupta, R, A Kabundi, and S M Miller (2011), ‘‘Forecasting the us real
house price index: Structural and non-structural models with and
without fundamentals,’’ Economic Modelling, 28(4), 2013--2021.

Herring, R J (2006), ‘‘Booms and busts in housing mar-
kets: How vulnerable is New Zealand?’’ Available from:
http://www.rbnz.govt.nz/research/fellowship/3324563.pdf.

Hull, L (2003), ‘‘Financial deregulation and household indebtedness,’’ Re-
serve Bank of New Zealand, Reserve Bank of New Zealand Discussion
Paper Series, DP2003/01.

Iacoviello, M and S Neri (2010), ‘‘Housing market spillovers: Evi-
dence from an estimated dsge model,’’ American Economic Journal:
Macroeconomics, 2(2), 125--64.

International Monetary Fund (2003), ‘‘United Kingdom: Selected issues,’’
International Monetary Fund, International Monetary Fund Country
Report, 03/47.

LeSage, J P (1999), Applied Econometrics using MATLAB.
McDonald, C and M Smith (2009), ‘‘Developing stratified housing price

measures for New Zealand,’’ Reserve Bank of New Zealand, Reserve
Bank of New Zealand Discussion Paper Series, DP2009/07.

McDonald, C and L Thorsrud (2011), ‘‘Evaluating density forecasts:
Model combination strategies versus the RBNZ,’’ Reserve Bank of
New Zealand, Reserve Bank of New Zealand Discussion Paper Series,
DP2011/03.

Muellbauer, J N (2007), ‘‘Housing, credit and consumer expenditure,’’
Proceedings, 267-- 334.

O’Donovan, B and D Rae (1997), ‘‘The determinants of house prices
in New Zealand: An aggregate and regional analysis,’’ New Zealand
Economic Papers, 31(2), 175--198.

Reserve Bank of New Zealand (2005), ‘‘Financial Stability Report,
November 2005,’’ Reserve Bank of New Zealand.

Reserve Bank of New Zealand (2008), ‘‘Monetary Policy Statement,
March 2008,’’ Reserve Bank of New Zealand.

Stock, J H and M W Watson (2002), ‘‘Macroeconomic forecasting using
diffusion indexes,’’ Journal of Business & Economic Statistics, 20(2),
147--62.

Timmermann, A (2006), Forecast Combinations, vol 1 of Handbook of
Economic Forecasting, chap 4, 135--196, Elsevier.

26



Weekin, O (2004), ‘‘Asset pricing and the housing market,’’ Bank of
England, Quarterly Bulletin.

27



Appendices

A. Data details

The table below lists all the data series used in our model suite, arranged
by data source. We also list the frequency of the raw data (‘m’ for monthly
and ‘q’ for quarterly) and whether the data is seasonally adjusted (denoted
by s.a).36 A * indicates that the series is adjusted. These adjustments are
explained in the notes below the table. The series included in the factor
model were not listed in section 3 so these are denoted by ‘Factor’.

Quotable Value New Zealand
House Prices

1 Quarterly house price index (s.a) q Factor
2 Quarterly house price index - Auckland (s.a) q
3 Quarterly house price index -Wellington (s.a) q
4 Quarterly house price index - Christchurch (s.a) q

Statistics New Zealand
National Accounts

5 Real GDP - total production (s.a) q Factor
6 Nominal GDP - total production (s.a) q
7 Real GDP - private investment dwellings (s.a) q
8 Real GDP - total private consumption (s.a) q

Price data
9 Consumer price index q Factor

Migration Data
10 Permanent and Long-term migration arrivals (s.a)* m Factor
11 Permanent and Long-term migration arrivals (s.a)* m Factor

Labour market Data
12 HLFS offical unemployment rate (s.a) q
13 Total population (s.a) q
14 HLFS Working age population (s.a) q

Housing related data
15 Number of dwellings (s.a) q
16 Number of consents for new dwellings (s.a) m

36 Most models are estimated using quarterly data so for these models the monthly data
is first converted to a quarterly frequency by taking a quarterly average.
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17 Value of consents for new dwellings (s.a) m Factor
18 New dwellings - value (s.a) m Factor
19 New dwellings - floor area (s.a) m Factor

Merchandise trade indexes
20 Terms of trade index q Factor

Reserve Bank of New Zealand
Interest and Exchange rates

21 Call rate m Factor
22 30 day Bank Bill yield m Factor
23 60 day Bank Bill yield m Factor
24 90-day Bank Bill yield m Factor
25 1 year Government Bond yield m Factor
26 2 year Government Bond yield m Factor
27 5 year Government Bond yield m Factor
28 10 year Government Bond yield m Factor
29 Floating mortgage - new customer rate m
30 2-year mortgage rate - new customer rate* m
31 5-year mortgage rate - new customer rate* m
32 New Zealand dollar TWI m Factor

Survey of expectations
33 Expected annual CPI inflation - 2 years ahead q

Real Estate Institute of New Zealand
Housing related data

34 Stratified house price index (s.a) m Factor
35 Number of dwelling sales (s.a)* m
36 Median days to sell (s.a) m

Datastream
37 Australia unemployment rate (standardised) q Factor

Ministry of housing
38 Median weekly rent (s.a)* m

ANZ
39 ANZ commodity price index - NZ$ m Factor
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Series used only for data adjustment

Reserve Bank of New Zealand
Interest and Exchange rates

40 2 year swap rate q
41 5 year swap rate q

Statistics New Zealand
CPI data

42 Actual rentals for housing (s.a) q

Notes

• The migration series (series 10 and 11) are de-trended using the HLFS
working age population (series 41).

• The 2-year and 5-year mortgage rate series (series 30 and 31) only date
back to 1998M6. These series are backdated using the 2 and 5 year swap
rates (series 40 and 41) plus the margin that existed between the respective
mortgage and swap rates at the beginning of the sample.

• The REINZ series for the number of dwelling sales (series 34) is de-trended
by subtracting an approximation of the number of new dwellings sold each
month (the quarterly change in the stock of residential dwellings (series 15),
divided by three to spread the sales over each month in the quarter). This
adjustment leaves just sales of existing dwellings.37

• The median weekly rent series (series 38) only dates back to 1993M1 and is
backdated prior to this using the actual rentals for housing series from the
CPI index (series 42).

37 The adjusted series has a higher correlation with the REINZ house price index. We use
this increase in correlation as a justification for the chosen de-trending method. We
also de-trended the series using a linear trend, and the working age population but
found these methods to produce inferior in-sample fits.
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