Discussion of "Monetary policy in the presence of an occasionally binding borrowing constraint"

Punnoose Jacob, Christie Smith, and Fang Yao

Sami Alpanda

Bank of Canada

October 2014
The views expressed in this paper are those of the authors. No responsibility should be attributed to the Bank of Canada.
DSGE model with saver/borrower HHs, housing and banks
- small open-economy (foreign K-flows through banks)
- capital requirement on banks (slow-moving but binding)
- collateral constraint on borrower HHs (occasionally-binding)

Bayesian estimation using NZ data
- constraint on HHs assumed to be slack

Main results: with occasionally-binding constraint on HHs
- asymmetric responses of model variables to MP and LVR
- lower volatility (relative to always-binding constraint)
- optimal Taylor rule slightly favors borrowers (relative to estimated TR)
Regulatory policy (speed-limit vs. LVR)

- Regulation implemented in model different than actual policy
 - actual: "speed-limit" on high-LVR mortgages (10% of new loans)
 - model: regulatory cap on LVR on all outstanding mortgages

- A possible suggestion to bring model closer to actual:
 - bank offers 2-types of loans (high-LVR and low-LVR) with different interest rates
 - borrowers carry both types; imperfect substitution across loans
 - occ.-binding constraint: 10% cap on the share of high LVR loans
Long-term mortgages

- Model features 1-period loans and, therefore, does not differentiate btw. new and existing debt
 - full pass-through from policy rate to lending rate (adj.-rate mortgages)
 - effects of LVR policy exaggerated when applied to all outstanding debt

- Several options to incorporate long-term loans:
 - slow-moving LVR constraint similar to the cap. req. (Iacoviello, 2014)
 - differentiate between new and existing debt (Garriga et al., 2013)
 - tradable long-term debt (can write recursively; Woodford, 2001)
Debt accumulation:

\[D_t = (1 - \kappa) D_{t-1} + L_t \]

Average borrowing rate on outstanding mortgages, \(R^M_t \):

\[D_t R^M_t = (1 - \Phi) (D_t - L_t) R^M_{t-1} + [L_t + \Phi (D_t - L_t)] R^F_t, \]

where \(\Phi \) : share of existing loans refinanced at current fixed rate, \(R^F_t \)

New borrowing:

\[L_t = \phi P_t q_{h,t} i_{hl,t} + \gamma [P_t q_{h,t} (1 - \delta_h) h_{l,t-1} - (1 - \kappa) D_{t-1}] + \epsilon_{l,t} \]

If \(\kappa = 1 \) and \(\gamma = \phi \), then constraint becomes similar to Iacoviello (2005)

\[D_t = \phi P_t q_{h,t} h_{l,t} \]
Smoother transition paths for HH debt-to-GDP ratio

Baseline

- Monetary policy
- Property tax
- Mortgage int. deduction
- Regulatory LTV
Role of banks in the model

- Clarifying the role of banks/bank capital in the model
 - what if we get rid of banks and revert to Iacoviello (2005) type model?
 - not much? 2 bp ↑ in lending spread when policy rate ↑ by 60 bp
 - interaction of bank capital with exchange rate movements

- In data, res. mortgages make up less than half of banking assets
 - substitution to other types of loans

- In data, a small number of banks dominate the market
 - 4 banks make up 90% of total banking assets and 95% of mortgage lending
 - subsidiaries of foreign banks
 - imperfect competition (Gerali et al., 2010)
Comments on estimation/calibration

- Estimation does not take into account occ.-binding constraint
 - no regulatory LVR cap during the estimation period?

- HH debt and lending spread data matched by measurement error
 - maybe add "structural" shocks

- Existence of equilibrium in estimated model despite
 - banks discount future more than borrowers, $\beta_b < \beta'$ (typo?)
 - no borrowing constraint on HHs (due to bank capital channel?)

- Also include:
 - bank capital or RER data in estimation for identification
 - habits to reduce consumption volatility
Optimal policy

- Optimal LVR ratio? probably higher than 0.9
 - what’s the financial stability concern?
 - pecuniary externality: house price affects all borrowing constraints
 - small probability/high impact event (crisis)

- Why include output growth, but not output gap, in Taylor rule?
 - optimal MP to growth is pro-cyclical

- Optimal policy with occ.-binding vs. perpetually-binding constraint
 - borrowers would gain with occ.-binding, but lose with perp.-binding
 - constraint is more severe, so shouldn’t MP help borrower more?
 - create inflation to reduce debt burden (and relax constraint)